A Parallel Graph Sampling Algorithm for Analyzing Gene Correlation Networks
نویسندگان
چکیده
Efficient analysis of complex networks is often a challenging task due to its large size and the noise inherent in the system. One popular method of overcoming this problem is through graph sampling, that is extracting a representative subgraph from the larger network. The accuracy of the sample is validated by comparing the combinatorial properties of the subgraph and the original network. However, there has been little study in comparing networks based on the applications that they represent. Furthermore, sampling methods are generally applied agnostically, without mapping to the requirements of the underlying analysis. In this paper,we introduce a parallel graph sampling algorithm focusing on gene correlation networks. Densely connected subgraphs indicate important functional units of gene products. In our sampling algorithm, we emphasize maintaining highly connected regions of the network through parallel sampling based on extracting the maximal chordal subgraph of the network. We validate our methods by comparing both combinatorial properties and functional units of the subgraphs and larger networks. Our results show that even with significant reduction of the network (on average 20% to 40%), we obtain reliable samplings and many of the relevant combinatorial and functional properties are retained in the subgraphs.
منابع مشابه
Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملA Multi Objective Graph Based Model for Analyzing Survivability of Vulnerable Networks
In the various fields of disaster management, choosing the best location for the Emergency Support & Supply Service Centers (ESSSCs) and the survivability of the network that provides the links between ESSSCs and their environment has a great role to be paid enough attention. This paper introduces a graph based model to measure the survivability of the linking's network. By values computed for ...
متن کاملParallel Jobs Scheduling with a Specific Due Date: Asemi-definite Relaxation-based Algorithm
This paper considers a different version of the parallel machines scheduling problem in which the parallel jobs simultaneously requirea pre-specifiedjob-dependent number of machines when being processed.This relaxation departs from one of the classic scheduling assumptions. While the analytical conditions can be easily statedfor some simple models, a graph model approach is required when confli...
متن کاملUsing a Fuzzy Rule-based Algorithm to Improve Routing in MPLS Networks
Today, the use of wireless and intelligent networks are widely used in many fields such as information technology and networking. There are several types of these networks that MPLS networks are one of these types. However, in MPLS networks there are issues and problems in the design and implementation discussion, for example security, throughput, losses, power consumption and so on. Basically,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011